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1 Introduction

This project work is performed on the course “Seminar on Case Studies in
Operations Research” in spring 2012. The actual research problem was set
by VTT, and carried out in cooperation with VTT and Posiva.

This report discusses subjects that relate to ensuring the safety of final dis-
posal of nuclear waste in Finland. In Finland, one of the responsible compa-
nies for final disposal of nuclear waste is Posiva, and it has worked together
with VTT with subjects that relate to the safety assessment and reliability
of the final disposal canisters. In this project new approaches have been de-
veloped to cope with the dependence of various tests that are carried out in
order to assess the safety of these final disposal canisters.

One of the major concerns for the licensee responsible of disposing nuclear
waste is that what is the probability for a defective canister to end up burying
to the bedrock, despite of all the tests and studies for the canisters. The
evidence to assess the safety of the canister is gathered by carrying out
different tests, for both the interior of the weld in between canister and the
lid, and to the surface of the lid. Posiva has defined the critical levels of
intact copper in the weld, and all the canisters need to fulfill these minimum
requirements [1]. One of the general problems in this project has been the
difficulty to combine evidence mathematically from different tests in order
to define the total probability of not detecting a defective canister.

One assumption would be to assume all the tests to be independent of one
another. This might, however, lead to too optimistic probabilities of not
detecting a defect. For dependent tests, some part of the information they
produce is already contained in the information some other test produces,
and thus does not improve the knowledge about the underlying matter as
much as independent tests would. The aim of this report is to study a method
for taking into account the different possible dependence structures of the
testing methods.

2 Background

2.1 Final disposal of nuclear waste in Finland

In Finland nuclear power companies are responsible for nuclear waste man-
agement [2]. Therefore, in 1995, the two operating nuclear power plant com-
panies Teollisuuden Voima Oyj and Fortum Power and Heat Oy established
Posiva Oy as an expert organization responsible for their spent nuclear fuel

2



Figure 1: A figure of the final disposal canister after placing it into the
repository. The numbers in the figure describe: 1. tunnel backfill, 2. bentonite,
3. final disposal canister, 4. bedrock.

[2] generated in the four reactors in Eurajoki and Loviisa and also for three
more reactors which have been planned to be built in the future.

The aim of Posiva is to find and to implement a way to encapsulate and
store the nuclear fuel which is not harmful for any organic nature and to
ensure that it will remain intact for very long time due to the low decay rate
of certain nuclear waste.

In order to realize this it is planned to store the spent nuclear fuel in the
bedrock of Olkiluoto in 400m depth, packed in copper canisters [2]. The
first canisters shall be stored in 2020 and the whole installation will have
a capacity of 4500 canisters. The Olkiluoto installation shall take the fuel
of the seven nuclear reactors mentioned above for the following 100 years.
Then the tunnels will be sealed mainly by bentonite and bedrock. The final
disposal canister in the final repository is seen in figure 1.

One of the safety issues in this context is the quality of the copper canisters.
After a canister is filled with nuclear waste its lid has to be welded onto the
body. This process is fully remote controlled due to the nuclear radiation.
The weld might be a weak point since different defects can occur in it. By
Posiva’s definition of a safe canister at least 35 mm of intact copper must
protect the nuclear fuel. To ensure that the weld fulfills this condition, it
is investigated by four different testing methods [3], where two methods
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enable one to investigate the interior of the specimen while the other two
search for defects on and close to the surface. If one of these four testing
methods detects a defect, further investigations and measurements will be
done in order to decide whether the defect is acceptable or the canister has
to be rejected. The latter case should be avoided since the canisters are very
expensive in relation to the application of the testing methods. The tests are
non-destructive which means that a specimen does not have to be destroyed
in order to test it. Non-destructive testing (NDT) methods ensure that the
measurements can be repeated if necessary.

2.2 Non-destructive testing

The four testing methods used in NDT are [1]:

Visual testing (VT) The first method applied to the weld of a copper
canister. Due to the nuclear radiation the testing is remote controlled.
The camera is installed above the canister and it searches the surface
for notches and cracks.

Eddy current (EC) EC testing uses electromagnetic induction to detect
defects in conductive materials. It is possible to detect holes and also
changes of material properties on the copper surface and up to 10 mm
below it. The purpose of this method is to quantitatively determine
the location and shape of any defect or internal structure within the
copper.

Radiography testing (RT) In RT method x-rays are sent to penetrate
solid matter. Using the fact that the x-rays are differently absorbed by
different material, information about the density and thickness of the
material can be derived. This is useful for finding holes in the interior
of the copper and also to determine their volumes.

Ultrasonic testing (UT) UT uses high frequency sound energy to pro-
duce sound waves and to make measurements. Ultrasonic inspection
can be used for defect detection, evaluation, dimensional measurements
and material characterization.

Thus VT and EC are the surface testing methods and RT and UT can be
used to study the interior of the weld.

The data obtained from NDT is used to assess whether each canister is
acceptable. Figure defining the acceptance and rejection process is seen in
figure 2. Complete explanation of the process is out of the scope of this
report, but one critical point is already seen from the figure: if a canister
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Figure 2: Acceptance and rejection process of canister weld according to
evaluation of NDT indications [1]

passes through the Indication evaluation diamond in the upper right corner,
it is accepted and placed to the final repository. Canister is accepted if none
of the NDT methods indicate a possible defect in it. Therefore, studying the
probability of all the methods simultaneously failing to detect a defect is
important.

2.3 Probability of Detection curves

The data gathered from NDT-tests is processed and built up to so called
Probability of Detection (POD) curves. These curves present the probability
of detecting a defect of a certain size. They also provide the confidence inter-
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Figure 3: An example of a POD curve. The figure presents the POD for high
frequency eddy current testing for holes. The probability of detection and
its confidence interval is on the y-axis, whereas the size of the hole on the
y-axis.

vals for the detection probabilities. POD curves are widely used in industry
as a tool for reliability assessment [4].

The POD curves are constructed from the NDT data by either â vs a or
hit/miss methods. In the first, the physical response signal of a test method
(â) is measured for known defect sizes (a). In the latter, the data available
is just discretely valued to hit (defect is detected) or miss (no detection).
The precise explanation of the construction of the POD curves is outside the
scope of this report, but for a comprehensive review see [4].

One POD curve is just for one specific NDTmethod. If a NDTmethod is used
with different settings, for example eddy current with high or low frequency,
a POD for each of setting is produced. The PODs are also dependent on the
type of the defect, so every defect type has its own POD. In the case of eddy
current testing for the final disposal canisters a total of four POD curves are
constructed using two different frequencies and two defect types (notch and
hole) [3]. Some preliminary POD curves for NDT methods from artificial
defects are already constructed by Posiva, but from now on our reasoning
assumes that all the POD curves utilized would be available.
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3 Coping with the dependencies

One general way to assess the dependence between random variables is so
called correlation coefficient, which is widely used in time series analysis.
Other possibilities include assuming certain multidimensional distributions,
but eventually that approach would as well lead to assuming a certain level
of correlation.

One easy assumption that could be made here is the assumption of either
independence, or complete dependence. In the case of our study, the assump-
tion of independence would mean that the tests detect defects independently
according to their own uncertainties of detecting a defect. The calculation of
expected joint probability of two independent random variables is presented
in equation 1.

E[X · Y ] = E[X] · E[Y ] (1)

On the other hand, the assumption of total dependence would essentially
mean that the other test is useless, as the other one already gives same
results as the other would give. In this sense, performing multiple tests that
are completely dependent would be waste of time and other resources. The
best case would be negative correlation between the test results, so that the
tests would be complementary. This case could indeed be true if for example
other test is better in detecting defects of certain geometric shape, when the
other constantly misses these geometrical shapes.

In equation 2 is shown the calculation of joint expectation of dependent
random variables in general case, which can be derived starting from the
definition of covariance:

E[X · Y ] = E[X] · E[Y ] + Cov[X,Y ]. (2)

Basically, if the correlation between random variables is negative, the covari-
ance will also be negative. For positively correlated random variables then
positive covariance indicates in that sense higher expected value for the joint
value 2 than in the independent case 1. By this reasoning, dependent NDTs
would imply higher probabilities for not detecting the defect, than in the
case of independence.

Next, the concept of copula functions is introduced. Copulas are nowadays a
popular approach when dealing with dependent random variables, especially
in the field of finance. [5]
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3.1 Short introduction to copulas

The generic way to combine dependent probability distributions into a joint
distribution is to use so called copula functions. Copula functions have been
around for many years already (since 1959, first introduced by Sklar [6]). In
this report the possibility of using copula functions to describe the depen-
dence structure between different NDT methods is studied.

The basic idea of copula functions is simple. They are used to describe the de-
pendence structure of different random variables. When dealing with copulas
in the context of NDT-methods, the marginal distribution for each NDT in
the each point estimate of the POD curve are supposed to be known. These
marginal distributions can then be combined using copula functions in order
to estimate an expected value. The multidimensional distribution contains
the information about both: the marginal distributions and the dependence
structure. In order to study only the dependence structure, one solution is to
separate it from the multivariate distribution and then get the actual copula.

The basic idea of copulas [7] starts with a random vector (X1, X2, .., Xd),
where Xis are random variables, and the system is d-dimensional. The cu-
mulative distribution function for the distribution of each random vector can
be written Fi(x) = P (Xi ≤ x). Now by performing the transformation for
the random vector by utilizing the individual marginal distribution functions,
following uniformly distributed random vectors are in hand:

(U1, U2, ..., Ud) = (F1(X1), F2(X2), ..., Fd(Xd)) (3)

Now the copula C is defined by the joint distribution of uniformly distributed
random vector U:

C(u1, u2, ..., ud) = P (U1 ≤ u1, U2 ≤ u2, ..., Ud ≤ ud). (4)

Copula essentially contains the same information as the joint probability dis-
tributions, except the information of marginal distributions. If the marginal
distributions are known, as well as the copula function, the same can be done
inversely, namely:

F (x1, x2, ..., xd) = C(F1(x1), F2(x2), ..., Fd(xd)). (5)

The equation 5 is also known as Sklar’s theorem [6], and it can be used to
create multi dimensional joint distribution for separate random variables,
assuming that their dependence structure (copula) and individual marginal
distributions can be assessed some other way.

Copulas are usually defined as cumulative distribution functions of the uni-
form margins, but in practice they are commonly differentiated into density
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form, which is more convenient and can express graphically more easily the
dependence structure. If the copula is sufficiently well-behaving, and differ-
entiable, the copula density function can be expressed as follows:

c(u1, u2, ..., ud) =
∂1∂2 . . . ∂d

∂u1∂u2 . . . ∂ud
C(u1, u2, ..., ud). (6)

As the empirical data is usually presented graphically as scatter plots, this
formulation of copula density function enables us to compare theoretical
graphical presentations to empirical (or simulated) scatter plots.

Some most commonly used copula functions are presented next.

3.1.1 Independence copula

Independence copula is probably the simplest copula one could imagine. It
is defined by the following equation:

Π(u1, u2, ..., ud) = u1 × u2 × · · · × ud. (7)

Utilizing the independence copula formulated in 7 is essentially the same as
multiplying probabilities of certain random variables together. Independence
copula is a trivial case, and applied also in this report.

3.1.2 Comonotonicity copula

Another example of a very simple copula is so called comonotonicity copula,
which indicates perfect positive dependence between random variables. It is
defined as follows:

M(u1, u2, ..., ud) = min(u1, u2, ..., ud). (8)

3.1.3 Countermonotonicity copula

The counterpart for comonotonicity copula is naturally the countermono-
tonicity copula, which indicates the other extreme case: perfect negative
dependence between random variables. In two-dimensional case it is defined:

W (u1, u2) = max(u1 + u2 − 1, 0) (9)
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3.1.4 Gaussian copula

Some copula functions can be derived directly from joint distributions. One
of these is so called Gaussian copula, which comes from the multinormal
distribution. Gaussian copula for two random variables is defined:

CGaρ (u1, u2) = ΦΣ(Φ−1(u1),Φ−1(u2)). (10)

In equation 10 ΦΣ is the cumulative density function of bivariate normal
distribution with zero mean, and covariance matrix Σ, and Φ−1 is the inverse
cumulative distribution function of normal distribution, in other words it is
the quantile function of normal distribution.

Some other examples of copulas, which are derived from multi-dimensional
distributions, exist. For example so called t-copula, which comes from multi-
dimensional student t-distribution. These are however not covered in this
report, as they are not used in later parts.

3.1.5 Archimedean copulas

The copulas that fall into family of Archimedean copulas are defined gener-
ally:

C(u1, u2, ..., ud) = ψ(ψ−1(u1), ψ−1(u2), ..., ψ−1(ud)). (11)

In the equation 11 above, the function ψ is called a generator function,
and for most Archimedean copulas the generator function also needs one or
more parameters as an input, which then define the copula more specifically.
Archimedean copulas are not derived from any distributions, but they are
defined explicitly and they are easy to express mathematically.

Generator functions for most interesting copulas are for Gumbel copula

ψG(t) = e−t/θ (12)

for Clayton copula
ψC(t) = (1 + t)−1/θ (13)

and for Frank copula

ψF (t) = − ln(1− (1− e−θ)e−t)
θ

. (14)

The parameter for each copula function is θ, which takes values in the se-
quence (0,∞) for Clayton and Frank copulas, and [1,∞) for Gumbel copula.
Their properties are highly dependant on the value of the parameter, but
some general properties can be assessed here: Frank copula indicates sym-
metric tail dependence, and the values in between are less dependent. Gumbel
copula indicates greater dependence to the upper tail of the distributions,
when the Clayton copula to the lower tail.
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3.2 Defining the approach

Next, an approach for utilizing the copulas in studying the possible depen-
dencies in the evidence of a defected final disposal canister is presented.

A defective canister is accepted if no indication of a defect is obtained, that
is, all the n testing methods fail. Thus, our main interest is the joint prob-
ability q(s) of not detecting a defect of size s in any of the NDT tests. The
probability of a single method failing can be derived straight from the POD
curve

qi(s) = 1− PODi(s), i ∈ {1, · · · , n}, (15)

where i describes the index of NDT method and PODi(s) the probability
of detecting a defect of size s, taken as a point from a corresponding POD
curve.

The uncertainty of the point estimate in the POD curve must be taken
into account. This is considered with the help of Beta distributions. Betas
are continuous probability distributions defined in the interval (0,1), thus
they are suitable for presenting the probability distribution of the detection
probability. A Beta(α, β) is fitted to the point estimate taken from the POD
curve so that the mean of the beta corresponds to the point estimate of the
probability of detecting a defect of certain size and the p0.05 point of the
beta corresponds to the 95% confidence interval the point estimate.

The cumulative distribution functions of the beta distributions represent now
the marginal distributions in equation (5). After assuming a copula C to
describe the dependence structure of the tests for a certain defect size and
indicating the cumulative beta function for a probability of detection of an
NDT method i with Bi, the joint cumulative probability of detecting a defect
of size s can be calculated as

P (x1, · · · , xn|s) = C(B1(x1), · · · , Bn(xn)). (16)

P is conditional to the size of the defect s, because the beta functions rep-
resent the probability of detection and its uncertainty for a particular s.

Then, to get the joint probability density p(x1, · · · , xn|s), the joint cumula-
tive is differentiated according to the equation (6). This probability density
is then used to calculate the ultimate probability of all the methods failing
at the same for the same canister:

q(s) =

∫ 1

0
· · ·

∫ 1

0
(1− x1) · · · (1− xn)p(x1, · · · , xn|s)dx1 · · · dxn (17)

Visual examination helps to understand the idea of the approach. Consider
two beta distributions, Beta(5,25) and Beta(7,20), whose probability density
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Figure 4: Probability density functions of two example Betas.

functions can be seen in figure 4. Then choose a gaussian copula with cor-
relation parameter ρ = 0.0, which defines the variables to be independent.
The cumulative and probability density functions of the copula can be seen
in the upper row of the figure 5. The probability density is flat because the
variables are independent. This copula does not change the joint distribution
of the betas seen in the lower row of figure 5.

By choosing another gaussian copula with ρ = −0.8, the copula produces a
complex dependence structure between the variables, seen in the upper right
corner of figure 6. Use of this copula alters also the joint probability density
of the betas to follow the shape of the copula, as can be seen in the lower
right corner of the figure 6

3.3 Choosing the copula

The comonotonicity and countermonotonicity copulas define the upper and
lower bounds within every other copula is [7] so they, along with the inde-
pendence copula are the natural choices for copulas to study.

As the most trivial copulas represent only the extreme cases of dependence,
the approach is expanded to cover also the Gaussian copula. By exploiting
the Gaussian copula the intensity of dependence can be varied by modifying
the correlation coefficient parameter of the copula.
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Figure 5: Clockwise from upper left corner: CDF of gaussian copula with
ρ = 0.0, PDF of gaussian copula with ρ = 0.0, CDF of joint beta distribution,
PDF of joint beta distribution.
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Figure 6: Clockwise from upper left corner: CDF of gaussian copula with ρ =
−0.8, PDF of gaussian copula with ρ = −0.8, CDF of joint beta distribution,
PDF of joint beta distribution.
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Table 1: Parameters for the beta distributions utilized in this study.
Method Parameter α Parameter β E[x]

Visual testing 10.5 0.5 0.9545
Eddy current testing 12.5 0.5 0.9615

3.4 A case study of the approach

Next a case study of the approach is presented. It is reasonable to assume
that the surface methods (VT,ET) are quite independent of the volumetric
methods (RT,UT), thus only the probability of not detecting a defect with
just the surface methods is considered.

Above defined approach considers the defect with just its size. In reality,
the geometry of a defect varies greatly and is measured in multiple metric
dimensions. Also, the position of defect in the weld has an effect on the
severity of it. Currently, there is not much information on the distribution
of sizes and positions of real defects. Thus, the case is limited to study only
one critical defect given by the experts of Posiva [3]:

a) through hole of diameter 0.5 mm If a lid has a through hole of suf-
ficiently large diameter all inspection methods (VT, ET, UT and RT)
should give an indication of it. However, none of them can detect the
complete information about the through hole and thus results of differ-
ent inspection methods need to be combined in the inference process.
The diameter of the reference hole is close to the resolution limit of UT
and RT, and thus an indication made by VT and ET can be important,
too.

A defect of this type forms a severe risk if positioned in the final disposal
cave.

The estimates for Beta distributions for a defect type a are assumed to be
the same as in [3] where they are obtained from POD curves or reasoned
otherwise. This gives us the parameters seen in table 1. The mean value of
the distribution corresponds to the point estimate of the POD.

The distribution functions generated by parameters in table 1 are presented
in figure 7. From this figure it can be seen that the probability mass is
highly concentrated on the latter end of the sequence (0, 1) and that the
beta-functions are almost the same for ET and VT. This means that the
probability of detection is relatively high, since the expected value of the
betas correspond to the expected value of the probability of detection in this
specific point estimate.
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Figure 7: The beta-functions utilized in this project.

Table 2: Estimates for q for different simple copulas.
Copula q

countermonotonicity 0.000528
independence 0.001803
comonotonicity 0.004939

Since the equation (17) cannot be solved analytically, Monte Carlo integra-
tion [8] is used. The integral of equation (17) for two tests can be calculated
numerically in the form

q(s) =
1

N

N∑
i=1

(1− x1)(1− x2)p(x1, x2|s), (18)

where N is the number of sample rounds used for MC and both x1 and x2

are individual samples from uniform distribution on the interval (0, 1). In
this case N = 100000.

Following the above defined procedure and choosing first comonotonicity,
countermonotonicity, independence copula and gaussian copula with corre-
lation parameter ρ ∈ (−1, 1), the estimates for q seen in figure 8 are obtained.
The values for the simple copulas are seen also in the table 2.
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Figure 8: Estimates for q as the copula is varied. The line shows the gaus-
sian copula as a function of correlation ρ with the 95% confidence interval of
the mean value based on Monte Carlo integration. The dots show the coun-
termonotonicity, independence and comonotonicity copula. Their position is
respective to the type of correlation they represent.
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The first remark from the figure is that the simple copulas match with the
values of Gaussian copulas, when placed according to the correlation values
they present. This was an expected outcome. Another remark is that the
probability of failed detection increases monotonically with the correlation,
which is also intuitively clear behaviour especially when ρ > 0. For the neg-
ative correlations the interpretation of the result is that the testing methods
become complementary, i.e. if the first method fails to detect the defect then
the probability of detecting it with the other method increases. This is pos-
sible for defects of certain geometry which are likely to be missed with one
testing method but likely to be spotted with another one.

It is also of interest to do some quantitative analysis between the different de-
pendencies. The probability of missing with both methods is about 5/2 larger
in case of complete dependence compared to the case of total independence.
This coefficient tells the magnitude of the error made when falsely assuming
independence between the testing methods. With assumed number of 2800
final disposal canisters [2], this means 2800(qdependence − qindependence) ≈ 8.8
defective and not detected canisters more in the final repository.

3.5 Validating the copula model

So far the study has concentrated in comparing different dependence struc-
tures, their effect on the joint probability distributions and their expected
values. The real world problem would then be: how to validate the use of
certain copula? Empirically copula models are easy to exploit for example in
the field of finance, where data is not scarce. In safety assessment, however,
the data available is not yet sufficient to determine the dependence struc-
ture credibly. On the other hand, also creating some new data for validation
purposes would require much effort and might be costly.

If the question of effort and cost is neglected, we might consider making
artificial defects, which would then be studied by different NDT methods in
order to estimate the dependence. Artificial defects are used already when
deriving the POD curves, so this should be possible in practice. Let say,
we want to estimate a reasonable copula for two uncertainty distributions,
namely beta distributions, which are the uncertainties of detection probabil-
ities for the specific defect size. One way to do it would be to make a large
number of artificial defects of certain size, which would all then be inspected
by both methods. On the other hand, having huge amount of hit-or-miss
points would not give much information about the dependence.

The data used here should perhaps be something more sophisticated than
just binary valued pairs. In real life the data would be, instead of hit-and-
miss, something more complex, for example amplitudes of electric current
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from the measurement. This kind of non-binary data could then be inter-
preted in order to make the judgement to accept or reject the canister. Here,
instead of interpreting the data into hit-or-miss, we could perhaps be able to
construct a set of paired points indicating the intensity of evidence. The in-
terpretation of this intensity could then be probabilistic, and after a certain
intensity threshold, the existence of a defect in a sample would be evident.

4 Conclusions

Studies carried out in this project work consider the possibility for utilizing
copula functions to take into account the dependence structure of different
non-destructive testing methods in the safety assessment of nuclear waste
final disposal canisters. Earlier studies have been done by assuming the test-
ing methods to be either independent or coupled [3], but in this study the
perspective is extended into several different dependence structures.

One of the main findings is the effect of dependence on the probability es-
timate of not detecting a defect in a final disposal canister when combin-
ing evidence from multiple testing methods. It is shown that the level of
dependence clearly affects the results. According to this study, incorrect as-
sumptions for the dependence structure of the tests might lead to erroneous
decisions and too optimistic estimates. If the dependence between tests in-
creases from zero correlation into correlation of ρ = 0.5, the probability of
not detecting a defect increases by more than 50 %.

The study also shows that making the different methods comprehensive (neg-
atively correlated) would improve the results. For example in NDT sense this
would mean that testing the weld with one method from multiple angles is
reasonable, if the detection depends on the geometry of the defect.

It is worth noticing that the case studied in this report was just for demon-
strating the approach of utilizing copulas to model the dependence structure
of the evidence. The case covered only two of the four tests, and only one
critical defect defined by the experts of Posiva. Therefore the numerical val-
ues obtained are only for comparing various dependencies and not to be used
as such.

Drawbacks for the approach utilizing copulas is that the dependence struc-
ture between different random variables is not easily validated. So far there
has been no data that could have been used to validate the dependence struc-
ture, so the studies in this paper remain in the level of speculating the effects
of different dependencies on the end result: the probability of not detecting
a critical defect.
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Table 3: The risks of the project
Issue Status
Ambiguous starting point Realized
Personal workload Not realized
BBN is not applicable Not realized (not covered)
Team member quits Not realized
Difficulties in schedule Realized
Suggested methods are not usable Not known yet

A Appendix 1: Comments on the course

The ambiguous starting point caused much difficulties for the group, as the
final goals were clarified not even before the mid-term report. The final report
ended up being relatively theoretical, and not so much about quantitative
issues, which was caused by the lack of data. First half of the project was
more about studying the subject, and all promising topics related to it. Most
of the topics studied were out of the scope of the final report, so they did
not end up being utilized.

All in all, our group worked well together and major difficulties were avoided,
although the group faced a slight rush in the end. Everyone contributed
well, and finding time for meetings was not as difficult as it seemed in the
beginning. Any of the risks indicated in the project plan and mid-term report
were not realized in their most severe form, but it is a matter of opinion
whether this project provided VTT what they were expecting. Probably at
least some new ideas for VTT were introduced, but it is of course possible
that none of these is usable in practice. The risks of the project are presented
In table 3. As it can be seen in table 3, the BBN approach introduced in
mid-term report and project plan did not end up being covered in the final
report, as the group thought it would be better to cover certain areas more
deeply rather than listing topics and covering them superficially.

As the project was in the end more about theory and less practical, dividing
tasks for group members was difficult. Planning the schedule in advance was
also difficult or even impossible, because it was not possible to divide tasks
into smaller entireties. Dividing workload for group members was more allo-
cating reading for group members and finding topics that one or two mem-
bers could familiarize themselves deeper. Working in group was not really
efficient, as the group held many meetings in which everyone participated.
Working together was still essential, and was rewarded by small advances one
at a time. In group meetings the group went through the subjects that had
recently been read, and then negotiate which of these seems most promising.
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In terms of the original assignment, we clearly took into deeper study the
question of handling dependencies between dependent evidence. Other sub-
jects which were indicated in the original assignment were not under deep
study in the final report. Perhaps collecting the work of the first half of the
project could have been presented in a form of a literary review, which was
however not expected from VTT. Moreover, it would have been much less
work for the group, if for example the assignment would have had a clear
literary list to start with. As no one of the group members was an expert on
issues related to probabilistic reasoning, acquiring a basic knowledge of the
issue was essential, but also laborious.

The project in general offered a unique viewpoint to see applying mathe-
matical methods in practice to real life problems. Practical issues turned out
to be more complex than expected, and many simplifications to the practi-
cal problem were to be made in order to address it mathematically. It also
turned out that real life problems tend to have no simple correct solution,
rather solutions that are better than others from certain aspect but worse
from other aspects.
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